jueves, 24 de marzo de 2011

URANIO

De símbolo U, es un elemento metálico radiactivo, principal combustible de los reactores nucleares. Su número atómico es 92 y es un miembro de los actínidos del sistema periódico.


El uranio fue descubierto en 1789, en la pechblenda, por el químico alemán Martin Heinrich Klaproth, quien le puso ese nombre por el planeta Urano. Fue aislado en estado metálico en 1841. Las propiedades radiactivas del uranio fueron demostradas en 1896, cuando el físico francés Antoine Henri Becquerel produjo (por la acción de una sal fluorescente denominada uranilsulfato de potasio) una imagen en una placa fotográfica cubierta con una sustancia que absorbía la luz. Las investigaciones sobre la radiactividad que siguieron al experimento de Becquerel condujeron al descubrimiento del radio y a nuevos conceptos de la organización atómica. Véase Átomo; Energía nuclear.



Antoine Henri Becquerel
El físico francés Antoine Henri Becquerel recibió el Premio Nobel de Física en 1903. Becquerel descubrió la radiactividad del uranio.

2

PROPIEDADES
El uranio tiene un punto de fusión de 1.132 °C, un punto de ebullición de 3.818 °C y una densidad de 19,05 g/cm3 a 25 °C; la masa atómica del elemento es 238,029. Tiene tres formas cristalinas; una de ellas, la que se obtiene a unos 770 °C, es maleable y dúctil. El uranio es soluble en ácido nítrico y clorhídrico, y es insoluble en los álcalis. Desplaza al hidrógeno de los ácidos minerales y de las disoluciones salinas de metales como el mercurio, la plata, el cobre, el estaño, el platino y el oro. Cuando está finamente dividido, arde con facilidad en el aire a temperaturas de 150 a 175 °C. A 1.000 °C, reacciona con el nitrógeno y forma un nitruro amarillo.


El uranio tiene estados de oxidación de 3, 4, 5 y 6. Entre los compuestos hexapositivos están el trióxido de uranio (UO3) y el cloruro de uranilo (UO2Cl2). El tetracloruro de uranio (UCl4) y el dióxido de uranio (UO2) son ejemplos de compuestos tetrapositivos o uranosos. Por lo general, estos últimos compuestos son estables, aunque expuestos excesivamente al aire revierten a la forma hexapositiva. Las sales de uranilo, como el cloruro, se pueden descomponer en presencia de luz intensa y materia orgánica.

3

ESTADO NATURAL
El uranio no existe en estado libre en la naturaleza, sino que se encuentra como óxido o sal compleja en minerales como la pechblenda y la carnotita. Tiene una proporción media en la corteza terrestre de unas 2 partes por millón y, entre los elementos, ocupa el lugar 48 en abundancia natural. El uranio puro contiene más de un 99% del isótopo uranio 238, menos de un 1% del isótopo fisible uranio 235 y cantidades menores de uranio 234, formado por la desintegración radiactiva del uranio 238. Entre los isótopos del uranio producidos artificialmente están el uranio 233, el uranio 237 y el uranio 239. Se conocen los isótopos con números másicos entre 222 y 242.


4

EXTRACCIÓN
En el procedimiento clásico para extraer uranio se separa la pechblenda y se mezcla con ácido sulfúrico y ácido nítrico. El uranio se disuelve así formando sulfato de uranilo (UO2SO4); el radio y los demás metales que se encuentran en la mena de pechblenda se precipitan como sulfatos. Al añadir hidróxido de sodio, el uranio precipita como diuranato de sodio (Na2U2O7·6H2O), conocido también como óxido amarillo de uranio. Para obtener uranio de la carnotita, se trata la mena, finamente triturada, con una disolución caliente de sosa y potasa cáustica para disolver el uranio, el radio y el vanadio. Después de eliminar la roca madre arenosa por medio del lavado, se trata la disolución con ácido sulfúrico y cloruro de bario. Una disolución cáustica alcalina añadida al líquido restante precipita el uranio y el radio, aumentando su concentración. Estos métodos clásicos de extraer uranio de sus minerales han sido sustituidos actualmente por otros procedimientos, como el método de extracción con disolventes, el intercambio iónico y el método de volatilidad. Para el método de producción del isótopo artificial uranio 233, véase Torio.


5

APLICACIONES
Después del descubrimiento de la fisión nuclear, el uranio se convirtió en un metal estratégico. Al principio, su uso estaba prácticamente restringido a la producción de armas nucleares. En 1954 se empezó a utilizar el uranio enriquecido con el isótopo 235 para el desarrollo de plantas nucleares. En tiempos de paz, se discutieron sus aplicaciones en la Conferencia Internacional sobre la Utilización Pacífica de la Energía Atómica de 1955, 1958 y 1964, celebradas en Ginebra (Suiza).


El potencial de uranio como fuente de energía industrial se hizo evidente con la botadura en 1954 del primer submarino movido por energía nuclear, el Nautilus de Estados Unidos. Las plantas de energía convencional, que producen 60.000 kW de electricidad, consumen unos 18 millones de kg de carbón por mes. Una planta nuclear de 60.000 kW sólo requiere 7 kg de uranio 235 por mes. Sin embargo, los problemas de escasez del uranio, de seguridad de las plantas y de almacenaje de los productos residuales del uranio y el plutonio radiactivos, han impedido la completa ejecución del potencial de la energía nuclear.
Las menas de uranio están ampliamente distribuidas por todo el mundo. Los sedimentos de pechblenda, la mena más rica en uranio, se encuentran principalmente en Canadá, República Democrática del Congo y Estados Unidos. En 1955 se descubrió en Colorado (Estados Unidos) un mineral llamado cofinita, una mena de alta calidad que contiene casi un 61% de uranio. Más tarde se encontraron sedimentos de este mineral en otros países. En 1998, la producción mundial de uranio fue de unas 33.800 toneladas, siendo Canadá, Australia, Níger, Namibia y Estados Unidos los principales países productores.